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Movements of molecular motors on cytoskeletal filaments are described by directed walks on a line. De-
tachment from this line is allowed to occur with a small probability. Motion in the surrounding fluid is
described by symmetric random walks. Effects of detachment and reattachment are calculated by an analytical
solution of the master equation in two and three dimensions. Results are obtained for the fraction of bound
motors, their average velocity, displacement, and dispersion. The analytical results are in good agreement with
results from Monte Carlo simulations and confirm the behavior predicted by scaling arguments. The diffusion
coefficient parallel to the filament becomes anomalously large since detachment and subsequent reattachment,
in the presence of directed motion of the bound motors, leads to a broadening of the density distribution. The
occurrence of protofilaments on a microtubule is modeled by internal states of the binding sites. After a
transient time, all protofilaments become equally populated.
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I. INTRODUCTION

Molecular motors are proteins that convert the free energy
released from chemical reactions into directed movements
[1,2]. Here, we focus on linear cytoskeletal motors that move
along cytoskeletal filaments. Many of these motors are pro-
cessive in the sense that a single motor molecule can move a
cargo over a large distance. The most prominent examples
are (conventional) kinesin and certain types of myosins,
which move along microtubules and actin filaments, respec-
tively. In the cell, these motors are involved in transport pro-
cesses, reorganization of the cytoskeleton, and cell division
[1]. However, experiments on the movements of molecular
motors can also be donein vitro, which has lead to the de-
velopment of various single molecule assays. In these experi-
ments, one can measure the velocities, step sizes, walking
distances, and forces for single motor molecules(see, e.g.,
[2]). In addition, they have stimulated a lot of theoretical
work devoted to the walks of molecular motors along fila-
ments(see, e.g.,[3]).

In the experiments, one observes that even processive mo-
tors unbind from their filamentous tracks after a certain
walking distance, which is typically of the order of 1mm.
For a kinesin molecule, this means that it makes about 100
steps of 8 nm before unbinding[4,5]. Myosin V motors have
a comparable walking distance, but a larger step size of
36 nm, so that they detach after about 30–50 steps[6,7].
Unbound motors then diffuse in the surrounding fluid until
they rebind to the same or to another filament and continue
their directed walk.

On larger scales, the motors thus perform complex ran-
dom walks, which consist of alternating sequences of di-

rected movements along filaments and nondirected diffusion
in the surrounding fluid, as shown schematically in Fig. 1.
These random walks have been discussed by Ajdari using
scaling arguments[8]. Recently, we have introduced lattice
models to describe the random walks of the motors as ran-
dom walks on a lattice, where certain lines of lattice sites
represent the filaments[9,10]. When bound to these lines, the
motors perform directed random walks. Detachment from
these lines is allowed to occur with a small but nonzero
probability. Diffusive motion in the surrounding fluid is de-
scribed by symmetric random walks.

These models are designed to study generic properties of
motor movements, but they can also be used to describe
specific motor molecules, since all model parameters can be
determined from the measured transport properties(see Ref.
[9]). In addition, motor–motor interactions can be easily in-
cluded into these models, for example, mutual exclusion of
motors from the binding sites of the filaments, which leads to
self-organized density profiles in closed systems[9] and
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FIG. 1. Random walk of a molecular motor: The motor per-
forms directed movement along a filament(gray rod) and unbinds
from it after a certain walking distance. The unbound motor diffuses
in the surrounding fluid until it rebinds to the filament and resumes
directed motion.
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boundary-induced phase transitions in open tube systems
[11] (see also Ref.[12]).

For the random walks of single motors or, equivalently,
for an ensemble of noninteracting motors, we have obtained
a number of exact results for the cases of a single filament
embedded in two-dimensional or three-dimensional space, as
reported in[10]. In particular, these random walks exhibit
anomalous drift behavior; the average position of the motor
advances slower than linearly with time. The same drift be-
havior is found for the movement along a single filament
immobilized in open compartments with the same dimen-
sionality, which is more easily accessible to experiment[9].
In the present article, we present a detailed derivation of the
analytical results of Ref.[10] for movements in two and
three dimensions without confining boundaries.

Analytical results are obtained by the following method,
which is a variant of the method of Fourier–Laplace trans-
forms for random walks in homogeneous space(see, e.g.,
[13,14]): By using Fourier–Laplace transforms of the prob-
ability distributions, the master equations of the random walk
can be transformed into a set of algebraic equations, one of
which, however, requires the evaluation of a nontrivial inte-
gral. Solving these algebraic equations, solutions for the
Fourier–Laplace transformed probability distributions and
their moments are obtained, and closed expressions in terms
of integrals can be derived for the time-dependent probabil-
ity distributions and moments. These can, on the one hand,
be evaluated numerically to obtain results for all times; on
the other hand, asymptotic results for small and large times
can be obtained fully analytically by using the Tauberian
theorems, which we summarize in the Appendix. In this way,
we derive expressions for the fraction of bound motors, the
average displacement and dispersion, and the effective ve-
locities and diffusion coefficients. The analytical results are
compared to data from Monte Carlo(MC) simulation and are
found to be in very good agreement.

In addition to the anomalous drift behavior, the random
walks of molecular motors also exhibit strongly enhanced
diffusion in the direction parallel to the filament.

Our article is organized as follows: We start with the two-
dimensional case in Sec. II and discuss the three-dimensional
case in Sec. III. In both cases, we derive probability distri-
butions and their moments for both the bound and unbound
motors. The fact that filaments may consist of several
protofilaments is taken into account in the final subsections
of Secs. II and III, where these are modeled by several inter-
nal states of the bound motors. In Sec. IV, we extend the
discussion to include a variable sticking probability for mo-
tors arriving at the filament. At the end, we include a short
summary of our results.

II. RANDOM WALKS IN TWO DIMENSIONS

Consider a discrete time random walk on a two-
dimensional square lattice with lattice sites labeled by inte-
ger coordinatessn,md. At each step, a particle has a prob-
ability 1/4 to jump into any of the four directions. For
modeling the motion of a motor on a filament, we choose a
different behavior on the line withm=0. Here, the probabil-

ity to jump from sn,0d to sn, ±1d equals1
4e, while jumps to

sn+1,0d have a probability 1−g− 1
2d− 1

2e; the probability to
jump to sn−1,0d is 1

2d, and the probability to make no jump
is g (see Fig. 2). The latter parameter is needed for modeling
realistic situations, in which the diffusion coefficient in the
fluid is much larger than on the filament[9]. The ordinary
random walk in two dimensions hasg=0, d=1/2, ande=1.
We shall assume that the escape probabilitye is small. For
e=0, the problem amounts to a directed random walk on the
line with m=0. The average speed of a motor particle on the
filament line isvb=1−g−d− 1

2e. Per step, there is a probabil-
ity 1

2e to unbind. The probability that the motor is still bound
after t steps is

s1 − 1
2edt < exps− 1

2etd . s1d

The master equation for this dynamics reads

Pn,mst + 1d =
1

4
Pn+1,m +

1

4
Pn−1,m +

1

4
Pn,m+1 +

1

4
Pn,m−1

smÞ 0, ± 1d, s2d

Pn,0st + 1d =
1

4
Pn,1 +

1

4
Pn,−1 + S1 − g −

1

2
e −

1

2
dDPn−1,0

+
d

2
Pn+1,0+ gPn,0, s3d

Pn,1st + 1d =
1

4
Pn+1,1+

1

4
Pn−1,1+

1

4
Pn,2 +

e

4
Pn,0, s4d

FIG. 2. The random walks of molecular motors are modeled as
random walks on a lattice. A line of lattice sites, which is indicated
here as a black line, represents a filament. Motors at filament sites
perform directed random walks, while motors at nonfilament sites
undergo symmetric random walks. For the movement in two dimen-
sions, the jump probabilities at nonfilament sites are 1/4 for each of
the four neighbor sites. At filament sites, a motor steps forward with
probability 1−g−d /2−e /2 and backward with probabilityd /2;
jumps to each of the adjacent nonfilament sites that lead to unbind-
ing occur with probabilitye /4. The dwell probability isg.
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Pn,−1st + 1d =
1

4
Pn+1,−1+

1

4
Pn−1,−1+

1

4
Pn,−2 +

e

4
Pn,0. s5d

As an initial condition, we take an ensemble of particles at
n=m=0, so that

Pn,mst = 0d = dn,0dm,0. s6d

Let us now define the Fourier–Laplace transforms of the
probability distribution along the filamentPbsn,td; Pn,0std
and the full distributionPn,mstd as

Pbsr,sd ; o
t=0

`

o
n=−`

`
eirn

s1 + sdt+1Pn,0std s7d

and

Psq,r,sd ; o
t=0

`

o
m,n=−`

`
eiqm+irn

s1 + sdt+1Pn,mstd. s8d

The master equations are then reduced to an algebraic equa-
tion relatingPbsr ,sd andPsq,r ,sd, as given by

S1 + s−
1

2
cosq −

1

2
cosrDPsq,r,sd = 1

+ HSF1 − g −
d

2
−

e

2
G −

1

4
Deir + Sd

2
−

1

4
De−ir

+ g −
1 − e

2
cosqJPbsr,sd. s9d

Here, the first line is what one would get in the case of a
symmetric random walk in two dimensions, and the second
line corrects those terms that are changed by the presence of
the filament. This equation has the obvious solution

Psq,r,sd =
1 + fgs1 − cosrd + 1

2s1 − edscosr − cosqd + ivb sin rgPbsr,sd

s+ 1 − 1
2 cosq − 1

2 cosr
. s10d

By integrating this result overq, we also obtainPbsr ,sd on
the left-hand side. It thus satisfies a linear equation that can
be easily solved. Introducing the variablem via

coshm ; 2 + 2s− cosr

or

sinhm = Îs2 + 2s− cosrd2 − 1, s11d

we may use the equalities

E
0

2p dq

2p

1

coshm − cosq
=

1

sinhm
,

s12d

E
0

2p dq

2p

cosq

coshm − cosq
=

e−m

sinhm
.

After some computation, we then end up with the probability
distribution

Pbsr,sd =
1

s+ 1 −g − s1 − g − 1
2d − 1

2edeir − 1
2de−ir − 1

2ee−m

=
1

s+ s1 − gds1 − cosrd + 1
2escosr − e−md − ivb sin r

s13d

for the motors bound to the filaments. The probability distri-
bution for all motors, bound and unbound, follows via Eq.
(10). It is easy to check that this is correct fore=0 (random

walk in one dimension) and forg=0, d= 1
2, ande=1 (nonbi-

ased random walk in two dimensions).

A. Properties of the motors bound to the line

1. Survival fraction

In the following, we extract the transport properties of the
motor’s random walks from the solution(13). The value at
r =0 gives us the Laplace transformN0ssd of the probability
N0std;on Pn,0std that the motor particle is bound to the fila-
ment line withm=0:

N0ssd = o
t=0

`
N0std

s1 + sdt+1

=
1

s+ 1
2es1 − e−md

=
1

s1 − eds+ eÎss1 + sd
. s14d

The inverse is

N0std = r
ds

2pi
s1 + sdtN0ssd

=E
0

1 dx

p

es1 − xdt+1/2

Îxfe2 + s1 − 2edxg

=E
0

e−2 dy

p

s1 − e2ydt+1/2

Îyf1 + s1 − 2edyg
. s15d
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This expression is exact. It holds for allt and for alle, d and
can be evaluated numerically. Values forN0std obtained in
this way are shown in Fig. 3(lines) for three different values
of the detachment ratee. Comparison to results of MC simu-
lations (data points) shows that the agreement is very good.

Let us now derive the asymptotic behavior for small and
large times, respectively. Ife is small andt@1, we have

N0ssd <
1

s+ eÎs
. s16d

The inverse then behaves as

N0std < E
−i`

i` ds

2pi

est

s+ eÎs
=E

0

` dy

pÎy

e−ye2t

y + 1
. s17d

The second integral is an obvious limit of the last integral in
Eq. (15). For deriving the short-time behavior, we may start
from the series of equalities, as given by

e−ye2t

y + 1
=

1

y + 1
+

e−ye2t − 1

y + 1
=

1

y + 1
+

e−ye2t − 1

y
+

e2t

y + 1

−
e−ye2t + ye2t − 1

y2 + ¯ . s18d

The integrals over the exponential terms are most easily car-
ried out using dimensional regularization. To show how that
works, let us consider the last term. We need to consider the
expression

−
1

p
E

0

`

dyyn−5/2se−ye2t + ye2t − 1d

= −
se2td3/2−n

p
GSn −

3

2
D

= −
se2td3/2−n

p

Gsn + 1
2d

sn − 3
2dsn − 1

2d s19d

in the limit of small n, where we used that in dimensional
regularization, integrals of powers are set equal to zero. The
limit n→0 can now be taken. Using the same procedure for
the other terms, we obtain

N0std < 1 − 2
eÎt
Îp

+ e2t −
4e3t3/2

3Îp
+ ¯ s20d

for small t, which represents a series in powers ofeÎt. For
t!1/e2, this is somewhat surprising: although the motors
detach at times,1/e, the recurrent behavior of the random
walk brings them mostly back to the filament. Fort!1/e2,
this just says that the motor did not have enough time to
escape from the line. The half-integer powers are related to
the long-range diffusion away from the filament.

Note that, for the short-time limit, we have assumed that
t@1; that is, thatt is large compared to the time required for
one step of the random walk. In that interval, the approxima-
tion (16) holds, with the termeÎs being due to diffusion.

For smaller times, the random walk exhibits discrete
steps. Our short-time result would hold for arbitrarily small
times in the limit in which the walk on the line becomes a
continuous-time random walk. A continuous-time random
walk with exponential waiting time distribution is obtained
approximately, if 1−g is small, which is the case for realistic
applications of our model to molecular motor setups[9]. The
same remark holds for all the short-time results discussed in
the following.

Another way to derive(20) is to expand(14) in powers of
1/Îs and to use the Tauberian theorem, which states that the
inverse Laplace transform ofN0ssd=as−a is given by

N0std =
a

Gsad
ta−1 s21d

(see the Appendix and, e.g., Ref.[15]). This theorem holds
both for positive and negative values ofa. It also shows that
positive integer powers ofs of N0ssd in the limit of smalls
do not contribute to long-time tails.

For large timest@1/e2, expression(17) for N0std can be
evaluated using the expansion 1/s1+yd<1−y+y2 for small
y, which leads to

N0std <
1

Îpe2t
S1 −

1

2e2t
+

3

4e4t2
D . s22d

Alternatively, one can expand(14) in powers ofÎs and again
use the Tauberian theorem. It follows from(22) that for large
t, the probability to be bound to the filament decays ast−1/2,
in agreement with scaling arguments[8,9]. Let us finally
mention that the inverse Laplace transform of(16) may be

FIG. 3. FractionN0 of motors bound to the filament as a func-
tion of time t for the two-dimensional case. The three curves cor-
respond toe=0.03 (circles), e=0.05 (squares), and e=0.08 (dia-
monds). Lines are obtained from the exact integral(15), the data
points from MC simulation. In the simulations, the other parameters
have been chosen asg=0, d=0.6, but the results shown here de-
pend only one.
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expressed in terms of a Mittag-Leffler function,N0std
<E1/2s−Îe2td, from which we could also obtain the
asymptotic behavior[16].

2. Average position and speed on the filament line

Expression (13) for the Fourier-Laplace transformed
probability distributionPbsr ,sd contains much more informa-
tion. At linear order inr, we get the Laplace transform of the
average position of motor particles along the filament line,

N1std ; o
n

nPn,0std = − i
]

]r
Pbsr,tdur=0. s23d

We obtain

N1ssd = vbN0
2ssd =

vb

fs1 − eds+ eÎss1 + sdg2
. s24d

In the limit of smalle and larget, this implies

N1ssd <
vb

fs+ eÎsg2
. s25d

We invert the Laplace transform by taking the 1/s term
apart. For the average position, we then obtain the
asymptotic behavior

N1std <
vb

e2 − 2vbeE
0

` dx

pÎx

e−xt

se2 + xd2 =
2vb

pe2E
0

` dy
Îy

1 − e−ye2t

s1 + yd2

s26d

for large t. The exact expression is

N1std =
2vbs1 − ed

pe2 E
0

e−2

dy
Î1 − e2yf1 − s1 − e2ydtg

Îyf1 + ys1 − 2edg2
,

s27d

which deviates from(26) for times of order unity. The full
expression(27) is evaluated numerically and is plotted in
Fig. 4. The same figure contains data points as obtained from
MC simulations that confirm the analytical result(27).

For short times, we proceed as above. We expand

N1std <
2vb

pe2E
0

` dx
Îx
F xe2t

s1 + xd2 +
1 − xe2t − e−xe2t

x2 G
= vbtS1 −

8

3

eÎt
Îp

D. s28d

This leads toN1<vbt. Thus, the average positionn̄b and
speedv̄b of the motors bound to the filament are given by

n̄bstd ;
N1std
N0std

< vbtS1 −
2

3

eÎt
Îp

D,

s29d

v̄b ;
dn̄b

dt
< vbS1 –

eÎt
Îp

D ,

wherevb is the average speed if the particles did not leave
the line.

For large times, the asymptotic expression(26) leads to

N1std <
vb

e2S1 −
2

eÎpt
D,

s30d

n̄bstd <
vb

Îpt

e
S1 −

2

eÎpt
D .

This result for the displacement can also be understood in the
following way: After a large timet, the motor has returned to
the filament,Ît times [8] and each encounter with the fila-
ment resulted in a displacement of,vb/e, which leads to the
scaling given by(30).

Therefore, for larget, the average speed of bound motors
behaves as

v̄bstd <
vb

Îp

2eÎt
=

p

2
N0stdvb. s31d

The last relation confirms the scalingv̄bstd,vbN0std, which
has been used in the scaling approach[9]. The effective mo-
tor velocity is reduced by a factor,N0std, that is, by the
probability that a motor is in the bound state. The relation
v̄b,N0vb also applies to a simple two-state random walk,
where motion is directed in one of the states only. In contrast
to the simple two-state random walk, however, the probabil-
ity N0 is time-dependent here. The factorp /2 in (31) is
solely due to the fact that only the bound motors are consid-
ered. We will show, in subsection B, that this factor is absent
if all motors, bound and unbound, are considered.

FIG. 4. Displacement of motors as a function of timet in the
two-dimensional case, as obtained from the exact integrals(lines)
and MC simulations(data points). Open circles show the average
positionn̄b of the bound motors, diamonds the average positionn̄ub

of the unbound motors, and full circles indicate the displacementn̄
averaged over all motors, which interpolates between the curve for
the bound motors at small times and the curve for the unbound
motors at large times. The parameters aree=0.05, g=0, and d
=0.6.
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3. Dispersion and diffusion coefficient on the filament line

By expanding expression(13) for the Fourier–Laplace
transformed probabilityPbsr ,sd up to second order inr, the
second moment of the distribution of bound motors is found
to behave as

N2ssd ; o
n

n2Pn,0ssd

= 2vb
2N0

3ssd + S1 − g − e +
e

4Îs+ s2DN0
2ssd. s32d

The Laplace transform is again inverted by complex integra-
tion. In the contour integral forN2std, we may replaceest by
est−1, since the subtracted integral vanishes, as can be seen
by closing the contour of integration in the right half plane.

Closing the contour along the negative real axis, we ob-
tain

N2std =
6vb

2s1 − ed2

pe4 E
0

e−2

dx
fs1 − xe2dt − 1gÎ1 − e2x

f1 + s1 − 2edxg3Îx

−
2vb

2

pe4E
0

e−2

dx
fs1 − xe2dt − 1gs1 − e2xd3/2

f1 + s1 − 2edxg3x3/2

+
2s1 − g − ed

pe2 E
0

e−2

dx
f1 − s1 − xe2dtgÎ1 − e2x

f1 + s1 − 2edxg2Îx

−
1

4pe2E
0

e−2

dx

3
s1 − 2e2xdfs1 − xe2dt − 1 +e2xtgf1 − s1 − 2edxg

f1 + s1 − 2edxg2x3/2Î1 − e2x

<
2vb

2

pe4E
0

`

dx
s1 − e−xe2tds1 − 3xd

s1 + xd3x3/2 +
2s1 − gd

e2

3E
0

` dx

p

1 − e−xe2t

s1 + xd2Îx
+

1

4e2E
0

` dx

p

s1 − e−xe2tds1 − xd
s1 + xd2xÎx

.

s33d

We have evaluated this exact expression numerically and
compared it with simulation data. As shown in Fig. 6, the
agreement is again very good.

For short times, we proceed as above:

N2std <
2vb

2

pe4E
0

`

dxFsxe2t − 1
2x2e4t2ds1 − 3xd

s1 + xd3x3/2

+ 3
e−xe2t − 1 +xe2t − 1

2x2e4t2

x7/2 G
= vb

2t2S1 −
16

5

eÎt
Îp

D + s1 − gdt +
8g − 7

3

etÎt
Îp

. s34d

This implies the normalized second moment

n2
b ;

N2std
N0std

< vb
2t2S1 −

6

5

eÎt
Îp

D + s1 − gdt +
2g − 1

3

etÎt
Îp

s35d

and the dispersion

Dnb
2 ; n2

b − n̄b
2 <

2vb
2

15

et2Ît
Îp

+ s1 − gdt +
2g − 1

3

etÎt
Îp

.

s36d

This result holds again in the limit of continuous time; that
is, for g close to 1. The leading term taking into account the
time discretization iss1−g−vb

2dt; that is, the dispersion at
short times, which arises from the walks along the filament,
is smaller in discrete than in continuous time. For the large-
time result, which we will derive next, the choice of continu-
ous or discrete time makes no difference. The relative dis-
persion

Dnb
2

n̄b
2 <

2

15

eÎt
Îp

s37d

is small sincet!1/e2. Using the dispersionDnb
2, we may

also calculate the time-dependent diffusion coefficient

Dbstd ;
1

2

dDnb
2

dt
<

1

2
s1 − gd +

1

6Îp

vb
2

e2e3t3/2 +
2g − 1

4

eÎt
Îp

.

s38d

In the scaling regimet,1/e2, Dbstd is much larger than its
limiting value 1

2s1−gd for e=0. This enhanced diffusion
arises from the fact that each motor may detach from the
microtubule with a probability exps−td for any value oft
= 1

2et, according to Eq.(1). This leads to a considerable
broadening of the bound motor distribution.

For large t, one can make a change of variables in the
integral expression(33) and usey;e2tx as the new integra-
tion variable. This leads to the asymptotic behavior

N2std <
4vb

2Ît

e3Îp
S1 −

3

2

Îp

eÎt
D +

1 − g

e2 S1 −
2

eÎpt
D +

Ît

2eÎp

s39d

and

Dnb
2 <

vb
2

e2S4 − p −
2Îp

eÎt
Dt +

1 − g

e
Îpt +

t

2
. s40d

The diffusion coefficient behaves as

Dbstd <
vb

2

2e2S4 − p −
Îp

eÎt
D +

s1 − gdÎp

4eÎt
+

1

4
s41d

for large t. The limiting value of the diffusion coefficient,
Dbs`d,svb/ed2, is large compared to the diffusion coeffi-
cient of the one-dimensional random walk along the fila-
ment, Dbs0d=s1−gd /2. This broadening of the distribution
occurs since the unbound motors lag behind the bound ones,
which implies that the rebinding motors also lag behind
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those that have been bound for some time. The scaling of the
dispersion can again be understood by considering the num-
ber of returns to the filament until timet. Its variance be-
haves as,Ît, which, together with the walking distance
,vb/e per encounter with the filament, leads to a dispersion
Dnb

2,svb/ed2t.

4. The density profile on the filament

At large times,n2
b scales asn̄b

2, and one may look for a
scaling form of the density. For smalls and smallr, the
Fourier–Laplace transformed probability distributionPbsr ,sd
as in (13) behaves as

Pbsr,sd <
1

s− ivbr + eÎs
. s42d

The inverse Fourier transform follows from the continuum
limit of Eq. (7). It then follows that, in this limit,Pn,0ssd=0
for n,0, while for positiven, one finds

Pn,0ssd <
1

vb
e−nss+eÎsd/vb. s43d

The inverse Laplace transform of this expression now leads
to Pn,0std=0 for n.vbt, which implies that the overall mo-
tion is slower than ballistic. Forn,vbt, we obtain

Pn,0std <
1

pvb
E

0

`

dse−sst−n/vbd sin
enÎs

vb
. s44d

After a change of variables froms to u=Îs, the u-integral
can be taken over the whole real axis(at the expense of a
factor of 1

2). Evaluation of this Gaussian integral leads to

Pn,0std <
en

2Îpvbsvbt − nd3/2
expS−

e2n2

4vbsvbt − ndD s45d

for nù0. This expression vanishes linearly as,n for smalln
and even exponentially fast asn approachesvbt from below.
The density profilePn,0std, as given by(45), is plotted in Fig.
5 for several values of the timet. Comparison with the re-
sults of MC simulations shows that the asymptotic expres-
sion, as given by(45), is very good for times that exceed
about 8000 time steps. At smaller times, the asymptotic ex-
pression overestimates the maximum ofPn,0 and underesti-
mates the tails ofPn,0 for large n (see Fig. 5). Simulation
data are obtained by averaging over 53107 realizations of
the random walk.

It is somewhat tedious to show that the momentsN0, N1,
and N2, as obtained from(45), agree with the previously
derived expressions. To verify this, one may, in an interme-
diate step, use the substitutionn=2vbtsÎy+y2−yd, which im-
plies

Pn,0stddn=
eÎtdy

Îps1 + yd
e−e2ty =

e2tdy

p
E

0

` dx
Îx

e−sx+y+xyde2t.

s46d

B. Properties of the unbound motors

Eventually, every motor will unbind and diffuse in the
surrounding fluid. We now discuss the effects of the filament
on the behavior of the unbound motors. The Fourier–Laplace
transformPsq,r ,sd of the probability distributionPn,mstd of
bound and unbound motors, as given by Eq.(10), can be
rewritten as

Psq,r,sd = Pbsr,sd + Pubsq,r,sd. s47d

The first part isPbsr ,sd as given by Eq.(42), which describes
the bound motors. The second part describes the correspond-
ing probability distribution

Pubsq,r,sd

= o
mÞ0

o
n

eiqm+irnPn,mssd

=
1

s+ 1 − 1
2 cosq − 1

2 cosr

+Fgs1 − cosrd + 1−e
2 scosr − cosqd + ivb sin r

s+ 1 − 1
2 cosq − 1

2 cosr
− 1G

3Pbsr,sd. s48d

of the unbound motors. For smalls, small r, and smallq,
taking into account thatr ,s and q,Îs, expression(47)
leads to

Psq,r,sd = Pbsr,sd + Pubsq,r,sd

<
1

s− ivbr + eÎs
+

4eÎs

ss− ivbr + eÎsdsq2 + 4sd
.

s49d

1. Position and longitudinal diffusion

Expanding(48) or, for large times,(49), in powers ofr
and q yields the moments of the distribution of unbound

FIG. 5. Density profilePbsn,td=Pn,0std of motors bound to the
filament as a function of the spatial coordinaten parallel to the
filament for different timest. The profiles are normalized with re-
spect to the probabilityN0 to be bound at the filament. The lines
indicate the analytical result from Eq.(45); data points are from MC
simulations. The parameters aree=0.05 andg=d=0.
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motors. The total fraction of unbound motors, as obtained
from (47) for r =q=0, is, of course,N0

ubstd=1−N0std, ex-
pressing motor conservation. The average longitudinal posi-
tion of the unbound motors is given by

N1
ubssd ; o

n
o
mÞ0

nPn,mssd

= − i
]

]r
Pubusq,r,sdur=q=0

=
vbN0ssd

s
− N1ssd

<
evb

Îsss+ eÎsd2
, s50d

as follows from(48) and (49). The last equality holds for
small e and smalls; that is, for larget.

For smallt, one has, from the exact expression in(50),

N1
ubstd <

4evbt
3/2

3Îp
S1 −

3

4
eÎptD , s51d

which leads, respectively, to

n̄ub < 2
3vbts1 − 1

4eÎptd
and

v̄ub < 2
3vbs1 − 3

8eÎptd s52d

for the average position and speed of the unbound motors.
For larget, the asymptotic expression given in(50) leads to

N1
ubstd <

vb

pe2E
0

`

ds
1 − e−e2ts

s3/2ss+ 1d
, s53d

which implies

N1
ubstd <

2vb
Ît

Îpe
S1 −

1

2

Îp

eÎt
D ,

n̄ub <
2vb

Ît
Îpe

, s54d

v̄ubstd <
vb

ÎpeÎt
.

Whereas each individual motor has zero average velocity in
the fluid, the statistical velocityv̄ub is nonzero, since it is
driven by unbinding from the cloud of motors moving on the
filament. The cloud of unbound motors advances, because
motors rebind to the filament and others detach from it, and
those detaching have propagated a certain distance compared
to those rebinding.

Since for large times, all motors are detached from the
filament most of the time,(54) gives the asymptotic displace-
ment of a motor, if averages are taken over all bound and
unbound motors; that is,

v̄std = v̄bN0 + v̄ubN0
ub < vbN0

ub =
vb

ÎpeÎt
s55d

at large times, as follows from(22), (31), and (54), and
N0

ub<1. The effective (time-dependent) velocity at large
times is v̄std<vbN0std, as predicted by scaling arguments
[8,9]. This can also be obtained by inspection of(50). The
displacement of all motors is given by

N1ssd + N1
ubssd = vb

N0ssd
s

. s56d

The normalization factor for all motors is unity. The effective
velocity is obtained from the inverse:

v̄std = vb
d

dt
E ds

2pi

estN0ssd
s

= vbE ds

2pi
estN0ssd = vbN0std.

s57d

Figure 4 shows the displacement of the bound and un-
bound motors, obtained by numerical evaluation of the exact
integrals (dotted lines) and corresponding simulation data
(circles for the bound motors and diamonds for the unbound
ones). The displacement averaged over all motors,n̄= n̄bN0
+ n̄ubN0

ub, is also shown in Fig. 4(solid line and squares). For
small times, it is equal to the displacement of the bound
motors, whereas for intermediate times, it interpolates to the
curve for the unbound motors. Since almost all motors are
detached for large times, the displacement of all motors is
then equal to the displacement of the unbound ones.

The longitudinal position has the second moment

N2
ubssd =

1

2s2 − N2ssd +
2vb

s
N1ssd −

g − s1 − ed /2

s
N0ssd

<
2evb

2

Îsss+ eÎsd3
. s58d

At short times, this means

N2
ubstd <

16

15Îp
vb

2et5/2S1 −
15

16

eÎt
Îp

D s59d

and thus

n2
ub <

8

15
vb

2t2S1 −
7

16

eÎt
Îp

D,

s60d

Dn2std < vb
2t2

4

45
S1 −

1

8

eÎt
Îp

D .

The last relation implies that, in the longitudinal direction,
the released motors spread in a broad cloud, not narrowly
centered around its average.
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At long times, one obtains

N1
ub <

2vb
Ît

eÎp
,

s61d

N2
ub < S2vb

2

e2 +
1

2
Dt.

This implies the dispersion and the diffusion coefficient as
given by

Dnub
2 < S2sp − 2dvb

2

pe2 +
1

2
Dt,

s62d

Di <
sp − 2dvb

2

pe2 +
1

4
.

The order of magnitude of the diffusion coefficient is again
vb

2/e2. The prefactor1−2/p.0.36 is slightly smaller than
the prefactor 2−p /2.0.43 of Eq.(41). The order of mag-
nitude Di ,vb

2/e2 tells us that, as on the line, longitudinal
diffusion is strongly enhanced by the unbinding from and
binding back to the line.

2. Transverse diffusion

The diffusion behavior perpendicular to the filament is
determined by(49) up to quadratic order inq. The average
transverse position vanishes and the dispersion of the trans-
verse position is given by

Dm2ssd = m2ssd =
1

2s2 −
1 − e

2s
N0ssd <

e

2s3/2ss+ eÎsd
s63d

and

Dm2std = m2std <
e

2p
E

0

`

ds
e−st − 1 +st

s3/2ss+ e2d
. s64d

This implies

Dm2std <
2et3/2

3Îp
,

s65d

D'std <
eÎt

2Îp

at short times. It is small because the motors started in a state
bound to the line. At large times, one has

Dm2std <
1

2
tS1 − 2

1

eÎpt
D . s66d

The transverse diffusion coefficient

D'std <
1

4 S1 −
1

eÎpt
D =

1

4
f1 − N0stdg s67d

approaches the free value14. Thus, the transverse diffusion
starts out very small, and finally reaches its value in free

space. The quantityDm2std is plotted in Fig. 7. There are
small deviations in comparison to the simulations at small
times arising from the time discretization.

3. Spatio-temporal density profile of the unbound motors

Finally, we derive the density profile of the unbound mo-
tors. After inversion of the Fourier-Laplace transforms, the
profile (49) becomes, in real space,

Pn,mssd <
e

vb
expF−

ns

vb
− Sne

vb
+ 2umuDÎsG . s68d

Comparing with(43), we have a shifted value foren and an
extra factore. The temporal form thus becomes

FIG. 6. Diffusion of motors parallel to the filament ind=2 and
d=3. Dispersion of bound motors parallel to the filament,Dnb

2, as a
function of time t. The dotted lines indicate the linear behavior
described by the large-time diffusion coefficientDbst=`d as given
by Eqs.(41) and(99). In two dimensions, this diffusion coefficient
is anomalously high; in three dimensions, it is given by the diffu-
sion away from the filament but exhibits large logarithmic correc-
tions. The parameters are the same as in Fig. 4.

FIG. 7. Diffusion of motors perpendicular to the filament ind
=2. Transverse dispersionDm2 as a function of timet. The param-
eters are the same as in Fig. 4.
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Pn,mstd <
esen + 2umuvbd

2Îpvbsvbt − nd3/2
expS−

sen + 2umuvbd2

4vbsvbt − nd
D

s69d

for mÞ0 andnù0. This again vanishes forn→vbt. For n
→0 it is finite whenm is finite, while it is zero for negative
n, in the present approximation. Although detachment fol-
lowed by diffusion to negativen may occur, the attainable
values are of order unity, and vanish to leading order in
vb/e2.

C. Pinning line with several tracks

Microtubules, the filament tracks of kinesin and dynein
motors, consist of 13 parallel protofilaments[2], each of
which provides a possible track for these motors. To incor-
porate this in our model, we assume that the pinning line at
m=0 hask internal states in whichk may be equal to 13. The
average occupation of each of these states is denoted bypn,0

j

with j =0, ... ,k−1. There is a small probability,12z, that a
motor goes from trackj to j +1 within one time step, and
similarly for going to trackj −1. To take into account the
cylindrical structure of the microtubule, we identifyj =k with
j =0. We assume that after detaching, the motor may ran-
domly go to the right or to the left of the tubule; likewise,
when attaching to the tubule either from the right or from the
left, the motor has an equal probability to attach to any of the
tracks.

In this model, the total fraction of motors at positionn
along the tubule is

Pn,0 = o
j=1

k

Pn,0
j . s70d

The dynamics given by Eqs.(2)–(5) remains valid and leads
to the same solution, as it is insensitive to the internal distri-
bution over the tracks.

The motion on the individual tracks is described by a
master equation analogous to Eq.(3) and is given by

Pn,0
j st + 1d =

1

4k
sPn,1 + Pn,−1d + S1 − g −

1

2
d −

1

2
eDPn−1,0

j

+
d

2
Pn+1,0

j +
z

2
sPn,0

j+1 + Pn,0
j−1d + sg − zdPn,0

j . s71d

When summed overj , this indeed leads back to Eq.(3). To
solve Eq.(71), another Fourier transform is needed, which is
defined by

Pn,0
v ; o

j=1

k

Pn,0
j eij v, s72d

with v=2p, /k and ,=0, ... ,k−1. We assume that, att=0,
all motors are located on the trackj =0, which corresponds to
the initial condition

Pn,m
j st = 0d = dn,0dm,0d j ,0. s73d

Going to the Fourier-Laplace transform, we find

P0
vsr,zd

=
2

2 + 2s− s2 − 2g − d − edeir − 2g − de−ir + 2zs1 − cosvd
.

s74d

The surviving fractions on the individual tracks are found
from the expressions forr =0. In the time representation, the
surviving fractions behave as

Pjstd = o
n

Pn,0
j std =

1

k
N0std +

1

k
o
vÞ0

e−i j ve−1
2

et−zs1−cosvdt.

s75d

The first term describes the symmetric distribution of the
motors over thek tracks; in Eq.(17) we showed that it de-
cays algebraically. The second term represents the asymme-
try arising from the initial condition that only one track is
populated. There are two decay mechanisms of this asymme-
try. The term exps−1

2etd expresses that detachment and sub-
sequent reattachment to randomly chosen tracks restores the
symmetry. This happens in particular for motors that return
quickly to a randomly chosen track, implying ordinary expo-
nential decay. The factor expf−zs1−cosvdtg expresses that
hopping to neighboring tracks also restores the symmetry.
For largek, the smallest of these rates is 2p2z /k2. Thus, the
exchange process dominates when this value is larger than
e /2.

Therefore, the asymmetry between the average occupa-
tion of the various tracks disappears after the discussed tran-
sient time.

III. RANDOM WALKS IN THREE DIMENSIONS

Now, let us consider the same kind of random walk on a
three-dimensional cubic lattice, in which the linem1=m2
=0 represents the filament that attracts and binds the motors.
Away from the filament, the jump probabilities are equal to

FIG. 8. Random walk probabilities for movements in three di-
mensions: At a nonfilament site, a motor jumps with probability 1/6
to each of the six neighbor sites; at a filament site, a forward step
has probability 1−g−d /2−2e /3, a backward stepd /2, and a jump
to each of the six adjacent nonfilament sites has probabilitye /6. As
in two dimensions, a motor does not step at all with probabilityg.
As in Fig. 2, the line of black lattice sites represents the filament.
The shaded areas with white lattice sites indicate the planes spanned
by then andm1 axes of the lattice perpendicular to the paper plane.
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1
6, while on the filament, they are given by 1−g− 1

2d− 2
3e and

1
2d in the forward and backward directions, respectively; they
are equal to1

6e for each of the four sideward directions, and
are equal tog to make no step(see Fig. 8). The average
short-time velocity isvb=1−g−d− 2

3e, while the sticking
probability is exps−2

3etd.
We denote the transverse coordinate asm=sm1,m2d. The

master equations for this dynamics have the form

Pn,mst + 1d =
1

6
Pn+1,m +

1

6
Pn−1,m +

1

6o
r

Pn,m+r, sm Þ 0,rd,

s76d

Pn,0st + 1d =
1

6o
r

Pn,r + S1 − g −
2

3
e −

1

2
dDPn−1,0

+
1

2
dPn+1,0 + gPn,0, s77d

Pn,rst + 1d =
1

6
Pn+1,r +

1

6
Pn−1,r +

1

6 o
r8sÞrd

Pn,r−r8 +
1

6
ePn,0.

s78d

In these equations,r and r8 denote the four transverse
nearest-neighbor vectors that connect a filament site to the
four adjacent nonfilament sites,r=s0, ±1d , s±1,0d. The
summations overr in (76) and (77) or r8 run over the four
possible values. Equation(78) holds for any of the four val-
ues ofr, with the sum overr8 running over the other three
vectors. We can follow the same steps as in the two-
dimensional case, again using the Fourier–Laplace trans-
forms. The Fourier transformation in the perpendicular direc-
tions leads to a transverse Fourier vectorq=sq1,q2d. The
equivalent of Eq.(10) becomes

Psq,r,sd =
3 + f3g + 1

2s5 − 6g − 4e − 3ddeir − 1
2s1 − 3dde−ir − s1 − edscosq1 + cosq2dgPbsr,sd

3 + 3s− cosr − cosq1 − cosq2
. s79d

By doing the integrals overq1 andq2, we derive the expres-
sion for Pbsr ,sd. The necessary integral is

Isr,sd =E
0

2p dq1

2p
E

0

2p dq2

2p

1

3 + 3s− cosr − cosq1 − cosq2

=
Îm

p
Ksmd s80d

with

m;
4

s3 + 3s− cosrd2 , s808d

where Ksmd=e0
p/2df /Î1−msin2 f is the complete elliptic

integral of the first kind. We also use the relation

E
0

2p dq1

2p
E

0

2p dq2

2p

cosq1 + cosq2

3 + 3s− cosr − cosq1 − cosq2

= s3 + 3s− cosrdIsr,sd − 1, s81d

whereIsr ,sd is given by(80). We then get

Pbsr,sd =
3Isr,sd

e + f3s1 − eds+ 1
2se − 3ddse−ir − 1d − 1

2s6 − 6g − 3d − 5edseir − 1dgIsr,sd
. s82d

For large s, one may useIssd<1/s3sd, to verify that
Pbsr ,sd<1/s, which is required by our initial condition that
all motors started atm1=m2=n=0.

A. Behavior on the filament

For smalle, r, ands, we may approximate(82) as

Pbsr,sd <
1

s− ivbr + Jssd
s83d

with
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Jssd ;
e

3Is0,sd
, s838d

which is analogous to(42). This implies in real space that

Pn,0ssd <
1

vb
e−nfs+Jssdg/vb s84d

for nù0. DecomposingJs−s± i0d=J1ssd± iJ2ssd, the inverse
Laplace transform leads to

Pn,0std < E
0

` ds

pvb
e−sst−n/vbd−nJ1ssd/vb sin

nJ2ssd
vb

. s85d

For large times, the variables will be small. SinceKsmd
<s1/2dlnf16/s1−mdg for m<1 [17], we may conclude thatI
diverges as

Isr,sd < −
1

2p
lnFt0Ss+

1

6
r2DG s86d

with

t0 =
3

16
s868d

for small s and r. This implies in particular that

Jssd < −
2pe

3 ln t0s
,

J1ssd < −
2pe

3

ln t0s

fln t0sg2 + p2 , s87d

J2ssd <
2pe

3

p

fln t0sg2 + p2 .

The Laplace transformed survival fractionN0ssd is equal
to Pbs0,sd. It then follows from(83) that

N0std =E
0

` ds

p

e−stJ2ssd
f− s+ J1ssdg2 + J2

2ssd
. s88d

For t@1/e, using(87) and neglectings with respect to lns,
we get, for the number of particles on the line, the simple
result

N0std < E
0

` ds

p

3e−st

2e
=

3

2pet
, s89d

which confirms the scalingN0std, t−1 predicted by the scal-
ing approach[9]. We can also derive the latter result from
N0ssd<f3/s2pedglnst0sd using the Tauberian transforms
summarized in the Appendix. The survival fraction is shown
in Fig. 9 for two values ofe. Again, the exact integral(88) is
evaluated numerically(lines) and compared to simulation
data(data points). The agreement is good.

Computation of the first momentN1ssd=−is] /]rd
3Pbsr ,sdur=0 with Pb as given by(83) leads to

N1std = 2vbE
0

` ds

p
e−st fJ1ssd − sgJ2ssd

hfJ1ssd − sg2 + J2
2ssdj2 . s90d

For small times, this behaves again asvbt, corresponding to
the velocityvb=1−g−d− 2

3e. For large times, we find

N1ssd < vbS 3

2pe
D2

ln2sst0d,

s91d

N1std <
9vb

2p2e2E
0

`

ds e−st ln
16

3s
=

9vb

2p2e2t
Sln

16t

3
+ gED

to leading order in 1/t, wheregE;0.577 215 is Euler’s con-
stant. This implies the respective average position and veloc-
ity

n̄bstd <
3vb

pe
Sln

t

t0
+ gED ,

s92d

v̄bstd <
3vb

pet
= 2N0stdvb.

The position of bound motors as a function of time is shown
in Fig. 10. The agreement between the analytical result and
the simulations is again quite good.

For the second moment, we obtain

N2ssd =
2vb

2

fs+ Jssdg3 +
1 − g − e

vb
N1ssd +

1

2pes
J2ssd

fs+ Jssdg2 , s93d

where we have taken into account the quadratic correction
term to Iss,r =0d, and

FIG. 9. FractionN0 of bound motors as a function of time for
the three-dimensional case. The two curves are fore=0.03(circles)
ande=0.05(diamonds). The other parameters areg=0 andd=0.6.
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N2std =
2vb

2

p
E

0

`

ds
e−sth3f− s+ J1ssdg2J2ssd − J2

3ssdj
hf− s+ J1ssdg2 + J2

2ssdj3

+
2s1 − g − ed

p
E

0

`

ds
e−sthfJ1ssd − sgJ2ssdj

hf− s+ J1ssdg2 + J2
2ssdj2

−
1

p2e
E

0

`

ds
e−stfJ2

3ssd − sJ1ssdJ2ssd + J1
2ssdJ2ssdg

hf− s+ J1ssdg2 + J2
2ssdj2

+
1

2pe
. s94d

The last term emerges from the singularity ats=0 in the third
term of N2ssd [Eq. (93)], and represents diffusion in the un-
bound state. For large times, this expression leads to the
asymptotic relations

N2ssd < − 2vb
2S 3

2pe
D3

ln3 st0 +
1

2pes
, s95d

N2std < 2vb
2S 3

2pe
D31

t
F3Sln

t

t0
+ gED2

−
p2

3
G +

1

2pe
,

s96d

n2std < 2vb
2S 3

2pe
D2F3Sln

t

t0
+ gED2

−
p2

3
G +

1

3
t, s97d

and

Dn2std < 2vb
2S 3

2pe
D2FSln

t

t0
+ gED2

−
p2

3
G +

1

3
t, s98d

with t0=3/16, as in(86). The longitudinal diffusion coeffi-
cient is

Dbstd <
1

6
+

9vb
2

2p2e2t
Fln

t

t0
+ gEG . s99d

Notice that, at typical timest,1/e, this is still of order 1/e,
and, thus, much larger than the value without the unbinding
mechanism. In contrast to the two-dimensional case dis-
cussed above, the leading term in three dimensions is given
by the usual diffusion in the unbound state, but there are
large logarithmic corrections of ordersvb/ed2. This can be
seen in Fig. 6, whereDnb is shown for both cases.

1. Density profile of the bound motors

As in the two-dimensional case, the spatial distribution of
the motors bound to the line can be derived in a somewhat
explicit form. Fornù0, one has

Pn,0std < E
−i`

i` ds

2pivb
e−A, s100d

with

A =
n

vb
fs+ Jssdg − st. s1008d

For largen and t, we may use the saddle point approxima-
tion. The conditionA8=0 yields

s=
2pen

3svbt − nd ln2 t0s
. s101d

For very smalle andvbt−n,n, this means thats is indeed
small:

s<
2pen

3svbt − nd ln2 e
. s102d

The saddle point values are

A = −
2pen

3vb ln t0s
S1 +

1

ln t0s
D <

2pen

3vb lns1/ed
, s103d

− A9 =
2pen

3s2vb ln2 t0s
S1 +

2

ln t0s
D <

2pen

3s2vb ln2 e
. s104d

The second derivative has a negative sign, which allows us
to choose the contour fromss.p.− i` to ss.p.+ i`, wheress.p. is
the saddle point value given in(101). The integration over
Gaussian fluctuations yields

Pn,0std .Î − 1

2pA9vb
2 e−A

<
Îen

svbt − ndÎ3vb

expS−
2pe

3vb lns1/ed
nD .

s105d

As a function ofn, this curve starts at 0, has a maximum,
and goes to zero atn=vbt. The apparent divergence nearn
=vbt of the last expression is an artifact of the saddle point
approximation.

We can check the normalization

FIG. 10. Average positionn̄b of the motors bound to the fila-
ment as a function of timet in three dimensions. The parameters are
the same as in Fig. 9.
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E
0

vbt/2

dn Pn,0std. s106d

This differs from the exact value by a factor of order
Îlns1/ed, which is, in any case, only logarithmic. This oc-
curs because the small-n behavior has not been treated prop-
erly by the saddle point approximation.

We have compared the profiles of the bound motors ob-
tained from the saddle point approximation with simulation
data, evaluating Eq.(105) with s taken from the numerical
solution of Eq.(101) and normalizing the saddle point pro-
file. As expected, agreement with the simulation data is only
good for largen. Therefore, we have also taken the inverse
Laplace transform of(100) numerically. The result is shown
in Fig. 11 for t=2000 andt=10 000 in comparison with
simulation results. To obtain the simulated profiles, simula-
tions were performed again with 53107 motors particles,
most of which are, however, detached from the filament at
the times the density profile was measured. While agreement
is good for largen, there are deviations in the region around
the maximum, which are probably due to the approximation
used in Eq.(83).

B. Behavior of the unbound motors

For the motors that detached from the pinning line, we
can follow the steps of subsection A. At large times, the
transport properties obtained for the unbound motors also
dominate the results that are obtained if averages are taken
over all motors, bound and unbound, because at large times,
the motors spend most of the time detached from the fila-
ment.

1. Average position and dispersion of unbound motors

From Eq. (79), we now find the Fourier-Laplace trans-
form of the distribution of unbound motors to be given by

Pubsq,r,sd <
Jssd

ss+ 1
6 q2dfs− irvb + Jssdg

s107d

for small r, q, ands. The term linear inr implies

N1
ubssd =

vb

s
N0ssd − N1ssd <

vbJssd
sfs+ Jssdg2

s108d

n̄ub <
3vb

2pe
Sln

t

t0
+ gED .

The last result is just half of the value for the bound particles
(92). As in the two-dimensional case, the latter result also
gives the average position of all motors, bound and unbound,
at large times. The logarithmic growth of the average posi-
tion and the corresponding time-dependent velocity confirm
the predictions of scaling arguments, which given̄std, ln t
[8,9]. The time-dependent velocity is again given byvbN0std
at large times.

For the second moment, we get

N2
ubssd =

1

3s2 − N2ssd +
2 − g − 2e /3

s
N0ssd +

2vb

s
N1ssd.

s109d

For small s or large t, this expression leads to the
asymptotic relations

N2
ubssd <

1

3s2 +
2v0

2Jssd
sfs+ Jssdg2 ,

n2
ub <

t

3
+

9vb
2

2p2e2 FSln
t

t0
+ gED2

− 1G ,

s110d

Dnub
2 <

t

3
+

9vb
2

4p2e2 FSln
t

t0
+ gED2

− 2G,

Di <
1

6
+

9vb
2

4p2e2t
Fln

t

t0
+ gEG ,

where the logarithmic correction to the free diffusion coeffi-
cient is half of the correction to the bound diffusion coeffi-
cient (99). That such leading singularities have different nu-
merical prefactors in different quantities could have been
anticipated, since the cloud of random walkers is smeared,
with a spread as large as the average. Ind=2, the effect was
stronger, since the leading terms already had different nu-
merical prefactors[cf. Eq. (41) for Db with Eq. (62) for Di].

For transversal transport, the situation is much simpler:

Dm1
2ssd = Dm2

2ssd = m̄1
2ssd = m̄2

2 =
Jssd

3s2fs+ Jssdg
. s111d

For larget, one has smalls, so thats!Jssd. This implies

Dm1,2
2 std = m̄1,2

2 std <
t

3
−

1

2pe
Sln

t

t0
+ gED , s112d

and the transverse diffusion coefficient is given by

FIG. 11. Density profilePbsnd=Pn,0 of motors bound to the
filament for the three-dimensional case as a function of the spatial
coordinaten parallel to the filament at timest=2000 (solid line,
circles) and t=104 (dashed line, diamonds). Lines are obtained by
numerical evaluation of the approximate analytical expression
(100); data points are from MC simulations. The parameters are the
same as in Fig. 4.
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D' =
1

6
−

1

4pe t
=

1

6
f1 − N0stdg. s113d

The limiting values are just those without the pinning line.
They are reached fort@1/e.

2. Density profile of unbound motors

Finally, we derive an expression for the probability distri-
bution (or, equivalently, the density profile in the case of
many noninteracting motors) away from the filament, again
using the saddle point approximation. From(107), we de-
duce

E d2q

s2pd2

eiq·m

q2 + 6s
=E

0

` dq q

2p

J0sqmd
q2 + 6s

=
1

2p
K0smÎ6sd,

s114d

for m= umuÞ0, whereK0 is a modified Bessel function. This
leads to the profile

Pn,mstd =
3

pvb
E ds

2pi
estK0smÎ6sde−nfs+Jssdg/vb. s115d

For closing the contour around the negative real axis we
need

K0sizd =
pi

2
H0

s1ds− zd = −
pi

2
H0

s2dszd = −
p

2
fY0szd + iJ0szdg.

s116d

We get a result of the type

Pn,mstd =
3

2pvb
E

0

`

ds e−st+nfs−J1ssdg/vb

3Fcos
nJ2ssd

vb
J0smÎ6sd − sin

nJ2ssd
vb

Y0smÎ6sdG .

s117d

The saddle point approximation can be done for large
enoughm, where

K0szd <Îp

z
e−z. s118d

We then get for the distribution away from the filament, that
is for mÞ0,

Pn,mstd =
3

pvb
E ds

2is6sd1/4Îpm
e−A .

3

pvbs6sd1/4Î− 2mA9
e−A,

s119d

where the saddle point values are

A =
1

vb
fsn − vbtds+ nJssd + mvb

Î6sg

= −
2pen

3vb ln t0s
S1 +

1

ln t0s
D +

2pen

3 ln2 t0s

mvb
Î3/s2sd

vbt − n − vbmÎ3/s2sd
s120d

and

− A9 =
2pen

3s2vb ln2 t0s
S1 +

2

ln t0s
D +

mÎ3/8

s3/2

<
2pen

3s2vb ln2 e
+

mÎ3/8

s3/2 , s121d

with the saddle point value ofs as given by

s=
2penvb

3 ln2 t0sfvbt − n − vbmÎ3/s2sdg
. s122d

C. Pinning line with several tracks

As before, we can assume that the line hask internal
states, which, fork=13, model the protofilaments on the mi-
crotubule. The motion on the individual tracks is described
by a master equation analogous to Eq.(3):

Pn,0
j st + 1d =

1

6k
o

r

Pn,r + S1 − g −
1

2
d −

2

3
eDPn−1,0

j

+
1

2
dPn+1,0

j +
z

2
sPn,0

j+1 + Pn,0
j−1d + sg − zdPn,0

j .

s123d

This can be analyzed as in thed=2 case. One finds, forv
Þ0,

P0
vsr,sd

=
1

s+ 1 − s1 − g − 1
2d − 3

2edeir − g − 1
2de−ir + zs1 − cosvd

.

s124d

The surviving fractions on the individual protofilaments are
found by insertingr =0. In the time representation, it reads

Pjstd = o
n

Pn,0
j std =

1

k
N0std +

1

k
o
vÞ0

e−i j ve−s3/ 2det−zs1− cosvdt.

s125d

The asymmetry decays as expf−s 2
3e+z−z cosvd tg. As in the

two-dimensional situation, the asymmetry has no influence
on the total occupationPn,0=o j Pn,0

j of site n along the mi-
crotubule, which was the subject of study in previous sub-
sections.

IV. VARIABLE STICKING PROBABILITY

We now want to incorporate the possibility that a motor
need not bind to the line when it collides with it. We consider
two approaches.
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A. Tubule above a two-dimensional plane

Let us now consider a tubule located above the linem
=0 of a two-dimensional plane. We consider the following
jump rates. Detaching: line→plane 1

2e; attaching: plane
→ line 1

2h; reduced jumps in the plane away from position
below the line:s1−hd /4. The probability to jump from the
tubule to the line withm=0 is equal to1

2e, and the probabil-
ity to jump from the line withm=0 to the tubule is given by
1
2h. In addition, the motor particle jumps with a probability
s1−hd /4 from the line withm=0 to a neighboring line with
m= ±1. Thus, forh=0, no reattachment occurs. Forh=1,
the other extreme occurs: one cannot jump from the linem
=0 to the rest of the plane; if initially all walkers were on the
tubule, they will go no further than below it, and hence will
not wander in the plane.

Thus, we consider the master equations

Pnmst + 1d =
1

4o
r

Pn+r1,m+r2
std + dm,0

1

2
ePnstd

−
h

4
sdm,1 + dm,−1dPn,0std, s126d

Pnst + 1d = gPnstd + S1 − g −
1

2
d −

1

2
eDPn−1std +

1

2
dPn+1std

+
1

2
hPn,0std. s127d

As an initial condition, we choose all motors on the location
n=0 of the tubule:

Pnms0d = 0,
s128d

Pns0d = dn,0.

The Fourier-Laplace transforms yield

F1 + s−
1

2
cosr −

1

2
cosqGPsq,rd =

1

2
ePsrd −

1

2
h cosqP0srd

s129d

and

f1 + s− g − s1 − g − 1
2d − 1

2edeir − 1
2de−irgPsrd = 1 + 1

2hP0srd.

s130d

We can integratePsq,rd over q:

P0srd =E dq

2p

ePsrd − h cosqP0srd
2 + 2s− cosr − cosq

=
1

sinhm
fePsrd − he−mP0srdg. s131d

With

coshm = 2 + 2s− cosr , s132d

it follows that

P0srd =
e

sinhm + he−m Psrd. s133d

Eliminating P0 now yields

Psr,sd = Hs+ s1 − gds1 − cosrd

+
1

2
eFcosr −

h

sinhm + he−mG − ivb sin rJ−1

.

s134d

For h= 1
2, the h-dependent term becomese−m; thus, the pre-

vious situation is recovered. Forh=1, one can check that
Psq,r ,sd=P0sr ,sd, showing that no motors reach the fluid
(total sticking).

For small parameters, one has

Psr,sd = Fs+
1

2
S1 − g −

1

2
eDr2 +

1

2
e
1 − h

h
m − ivbrG−1

= ss+ eeff
Îs− ivbrd−1. s135d

Thus, the only effect is the effective detaching probability

e → eeff = e
1 − h

h
. s136d

For the probability to be in the fluid, no subtraction as in
(49) is needed. We have, immediately,

Psq,r,sd =
2e

4s+ 4 − 2 cosq − 2 cosr

3
he−m + sinhm − h cosq

he−m + sinhm
Psr,sd

<
4eeff

Îs

sq2 + 4sdss+ eeff
Îs− ivbrd

. s137d

We can now look for the enhancement of the speed on the
tubule; it was a factor ofp /2 in Eq.(31). Let us assume that
h is small, so that there is a large time domain in which we
may neglect it. Let us thus set

s= h2s, t =
t

h2, and e = h2ẽ. s138d

We then get

N0ssd =
1

h2

1 + 2Îs

ss1 + 2Îsd + ẽÎs
s139d

and

N1ssd =
vb

h4S 1 + 2Îs

ss1 + 2Îsd + ẽÎs
D2

. s140d

There are two domains:
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(1) t!1, s@1. Here, N0std=e−s1 / 2dẽs=e−s1 / 2det, N1std
=vbte

−s1 / 2det. Thus, n̄0std=vbt and vstd=vb. This is still a
sharp profile. Although particles have detached, the remain-
ing ones go firmly with the bare speedvb.

(2) t@1, s!1. This we have already discussed in(31).
The relationvstd= 1

2pvbN0std just says thatvstd!vb.

B. Variable sticking probability

Let us now include a variable sticking probability in our
model: If a motor reaches the filament, it rebinds to it with a
probability pad, while it is reflected from the filament with
probability 1−pad. Such a behavior can be due to steric con-
straints; if, for example, a motor with an attached bead dif-
fuses close to the filament, but with the bead between the
motor and the filament. In the long-time regime, the intro-
duction of this additional parameter is expected to reduce to
the probability that a motor is bound to the filament and thus
the effective time-dependent velocity by a factorpad. This
has been confirmed by simulations for the case of random
walks in open compartments[9]. In this section, we show
analytically that this is indeed the case.

1. The two-dimensional case

Let us begin with the simpler cased=2. To include the
sticking probability, the master equations form=0, ±1 have
to be modified: On the linesm= ±1, the rate for hopping to
m=0 (i.e., to the filament) is pad/4, while there is a rates1
−padd /4 not to jump. Equivalently, a motor on these lines
attempts to hop to the filament with the usual rate 1/4, but
the jump is rejected with probability 1−pad. The modified
master equations are

Pn,0st + 1d =
pad

4
Pn,1 +

pad

4
Pn,−1 + S1 − g −

1

2
e −

1

2
dDPn−1,0

+
d

2
Pn+1,0+ gPn,0 s141d

and

Pn,±1st + 1d =
1

4
Pn+1,±1+

1

4
Pn−1,±1+

1

4
Pn,±2 +

e

4
Pn,0

+
1 − pad

4
Pn,±1. s142d

The equivalent of Eq.(9) now contains an additional term
with P1sr ,sd, the Fourier-Laplace transform of the probabil-
ity distributionPn,1std along the lines withm= ±1 adjacent to
the filament line:

S1 + s−
1

2
cosq −

1

2
cosrDPsq,r,sd

= 1 +
pad− 1

2
s1 − cosqdP1sr,sd + Fg + S3 − 2e − 2d

4
− gD

3eir −
1 − 2d

4
e−ir −

1 − e

2
cosqGPbsr,sd. s143d

Pbsr ,sd andP1sr ,sd are related via the Fourier-Laplace trans-
form of Eq. (141):

P1sr,sd =
2

pad
HF1 + s− S1 − g −

e

2
−

d

2
Deir

−
d

2
e−ir − gGPbsr,sd − 1J . s144d

Using this expression forP1sr ,sd, we can proceed in the
same way as above and obtain

Pbsr,sd =

1 +
1 − pad

pad

s1 − e−md

Fs+ s1 − gds1 − cosrd +
e

2
cosr − ivb sin rGF1 +

1 − pad

pad

s1 − e−mdG −
e

2
e−m

. s145d

For smallr ands, this leads to the asymptotic relation

Pbsr,sd <
1

s− ivbr +
e

pad

Îs

, s146d

which has exactly the form of Eq.(42), but with an effective
detachment ratee /pad. Doing the analogous calculations for
the unbound motors, we find

Pubsq,r,sd <
4eÎs

fs− ivbr + se / paddÎsgsq2 + 4sd
, s147d

which corresponds to Eq.(49), again with the effective de-
tachment ratee /pad. Hence, in the long-time regime, the
only effect of the sticking probabilitypad is a rescaling of the
detachment rate. Thus, the probability for a motor to be
bound to the filament for large times decays asN0std
<pad/ sÎpet1/2d, and the average displacement grows as

RANDOM WALKS OF MOLECULAR MOTORS ARISING… PHYSICAL REVIEW E 69, 061911(2004)

061911-17



,spad/edÎt; that is, both quantities are reduced by a factor
pad, as expected from the scaling approach[9].

2. The three-dimensional case

For d=3, the calculation is completely analogous. The
sticking probability is introduced in the same way as in sub-

section 1: A motor at a neighboring site of the filament at-
tempts to jump to the filament with rate 1/6 as usual, but the
attempt is only successful with a probabilitypad, so that the
motor remains at its site with a probabilitys1−padd /6. The
probability distributionsPsq ,r ,sd, P1sr ,sd, and Pbsr ,sd are
thus related via

P1sr,sd =
3

2pad
HF1 + s− S1 − g −

2e

3
−

d

2
Deir −

d

2
e−ir − gGPbsr,sd − 1J s148d

and

Psq,r,sd =
3 + f3g + 1

2s5 − 6g − 4e − 3ddeir − 1
2s1 − 3dde−ir − s1 − edscosq1 + cosq2dgPbsr,sd

3 + 3s− cosr − cosq1 − cosq2

+
s1 − paddf2 − cosq1 − cosq2gP1sr,sd

3 + 3s− cosr − cosq1 − cosq2
. s149d

From these two equations, we obtain a rather complicated
expression forPbsr ,sd, which, in the limit of smalls and r,
can be reduced to

Pbsr,sd <
1

s− ivbr + J̃ssd
, s150d

with

J̃ssd =
e

3padIsr = 0,sd
, s1508d

whereIsr ,sd is the integral(80). For the unbound motors, we
find

Pubsq,r,sd <
J̃ssd

fs− ivbr + J̃ssdgSs+
q1

2

6
+

q2
2

6
D . s151d

Both equations differ from those without the parameterpad
(i.e., from the casepad=1) only by a rescaling of the detach-
ment rate, just as in the two-dimensional case discussed
above. Therefore, in this case as well, the long time displace-
ment and the probability to be bound to the filament are
reduced by a factorpad, as these quantities are proportional
to e−1.

V. SUMMARY AND CONCLUSIONS

In summary, we have calculated various transport proper-
ties arising from the random walks of molecular motors.
Over large length scaless@1 mmd, molecular motors per-
form random walks that consist of alternating sequences of
directed movements along filaments and nondirected Brown-
ian motion in the surrounding fluid. Here, we have described
these walks as random walks on a cubic lattice and have

derived analytical solutions for the cases of a single filament
in two or three dimensions using Fourier–Laplace trans-
forms. We have obtained closed expressions for the probabil-
ity distributions of bound and unbound motors and their mo-
ments, which can be evaluated numerically for all times. The
asymptotic behavior at small and large times was obtained
fully analytically. In this way, we derived the fraction of
bound motors, the average position, and dispersion, as well
as effective velocities and diffusion coefficients. All these
results were found to be in excellent agreement with results
from MC simulations.

The random walks of molecular motors exhibit anoma-
lous drift behavior. In two dimensions, the average position
of both the bound and unbound motors grows as,Ît at large
times t, while in three dimensions, the displacements grow
only logarithmically. In addition, diffusion parallel to the
filament is strongly enhanced. In the two-dimensional case,
the diffusion coefficient has an anomalously high value,
which is of the ordersvb/ed2, where e denotes the small
detachment probability[see(41)]. In the three-dimensional
case, there are large logarithmic corrections to the usual dif-
fusion behavior, again of the ordersvb/ed2 [see(99)].

Finally, let us emphasize that similar behavior is also ob-
tained for random walks in confined geometries that have
effectively the same dimensionality[9]. These geometries
are accessible toin vitro experiments. In addition, unbinding
of motors from filaments and rebinding to them might also
be important for the design of nanotechnological devices us-
ing molecular motors as transport systems, which has been
proposed by several groups[18–20].
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APPENDIX: TAUBERIAN THEOREMS

The Tauberian theorems allow one to obtain the
asymptotic behavior of a functionfstd at large timest from
the small-s behavior of its Laplace transformfssd=Lffstdg
(see, e.g.,[15]). The following inverse Laplace transforms
L−1ffssdg are used for the random walks of molecular mo-
tors:

L−1fs−ag <
ata−1

Gs1 + ad
,

L−1f− s−a ln sg <
ta−1

Gs1 + ad
f1 + a ln t − acs1 + adg,

L−1fs−a ln2 sg <
ta−1

Gs1 + ad
fa ln2 t + 2 ln t − 2a ln tcs1 + ad

− 2cs1 + ad + ac2s1 + adg,

L−1f− ln3 sg <
1

t
F3sln t + gEd2 −

p2

3
G . sA1d

In these expressions,G is the Gamma function,Gszd
=e0

`tz−1e−tdt, c the Psi function defined by cszd
=dfln Gszdg /dz, andgE.0.577 215 is Euler’s constant.
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